Kernel density estimation-based real-time prediction for respiratory motion.

نویسنده

  • Dan Ruan
چکیده

Effective delivery of adaptive radiotherapy requires locating the target with high precision in real time. System latency caused by data acquisition, streaming, processing and delivery control necessitates prediction. Prediction is particularly challenging for highly mobile targets such as thoracic and abdominal tumors undergoing respiration-induced motion. The complexity of the respiratory motion makes it difficult to build and justify explicit models. In this study, we honor the intrinsic uncertainties in respiratory motion and propose a statistical treatment of the prediction problem. Instead of asking for a deterministic covariate-response map and a unique estimate value for future target position, we aim to obtain a distribution of the future target position (response variable) conditioned on the observed historical sample values (covariate variable). The key idea is to estimate the joint probability distribution (pdf) of the covariate and response variables using an efficient kernel density estimation method. Then, the problem of identifying the distribution of the future target position reduces to identifying the section in the joint pdf based on the observed covariate. Subsequently, estimators are derived based on this estimated conditional distribution. This probabilistic perspective has some distinctive advantages over existing deterministic schemes: (1) it is compatible with potentially inconsistent training samples, i.e., when close covariate variables correspond to dramatically different response values; (2) it is not restricted by any prior structural assumption on the map between the covariate and the response; (3) the two-stage setup allows much freedom in choosing statistical estimates and provides a full nonparametric description of the uncertainty for the resulting estimate. We evaluated the prediction performance on ten patient RPM traces, using the root mean squared difference between the prediction and the observed value normalized by the standard deviation of the observed data as the error metric. Furthermore, we compared the proposed method with two benchmark methods: most recent sample and an adaptive linear filter. The kernel density estimation-based prediction results demonstrate universally significant improvement over the alternatives and are especially valuable for long lookahead time, when the alternative methods fail to produce useful predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WE-G-213CD-07: Enhancing Respiratory Motion Prediction Accuracy Using Audiovisual (AV) Biofeedback.

PURPOSE Prediction of respiratory-related tumor motion is hampered by irregularities present in the patient breathing patterns. Audiovisual (AV) biofeedback reduces irregularities, thereby producing a less complex breathing pattern. The aim of this project is to improve respiratory motion prediction accuracy using an AV biofeedback system. METHODS An AV biofeedback system combined with real-t...

متن کامل

Comparison of the Gamma kernel and the orthogonal series methods of density estimation

The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...

متن کامل

Markovian Delay Prediction-Based Control of Networked Systems

A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...

متن کامل

Identification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection

The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...

متن کامل

Human Motion Prediction Using Kernel Density Estimators Acknowledgements First of All I Would like to Thank My Tutors

Markerless human motion tracking could be achieved through two distinct, but complementary, sets of techniques: those based on the analysis of the image, and those based on prior knowledge. Among the latter, direct prediction of human motion on a global perspective has promising potential, yet it is also a challenging Machine Learning problem, due to the high-dimensionality of the data. This ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 55 5  شماره 

صفحات  -

تاریخ انتشار 2010